翻訳と辞書
Words near each other
・ Fundu Văii
・ Fundu Văii River (Ialomicioara)
・ Fundul Galbenei
・ Fundul Pârâului River
・ Fundulea
・ Fundamental theology
・ Fundamental theorem
・ Fundamental theorem of algebra
・ Fundamental theorem of algebraic K-theory
・ Fundamental theorem of arithmetic
・ Fundamental theorem of asset pricing
・ Fundamental theorem of calculus
・ Fundamental theorem of curves
・ Fundamental theorem of Galois theory
・ Fundamental theorem of ideal theory in number fields
Fundamental theorem of linear algebra
・ Fundamental theorem of linear programming
・ Fundamental theorem of poker
・ Fundamental theorem of Riemannian geometry
・ Fundamental theorem of software engineering
・ Fundamental theorem on homomorphisms
・ Fundamental theorems of welfare economics
・ Fundamental theory
・ Fundamental thermodynamic relation
・ Fundamental Tour
・ Fundamental unit (number theory)
・ Fundamental vector field
・ Fundamentalism
・ Fundamentalism (disambiguation)
・ Fundamentalism (sculpture)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fundamental theorem of linear algebra : ウィキペディア英語版
Fundamental theorem of linear algebra
In mathematics, the fundamental theorem of linear algebra makes several statements regarding vector spaces. These may be stated concretely in terms of the rank ''r'' of an matrix ''A'' and its singular value decomposition:
:A=U\Sigma V^\mathrm\
First, each matrix A \in \mathbf^ ( A has m rows and n columns) induces four ''fundamental subspaces''. These ''fundamental subspaces'' are:
(A)
|\mathbf^m
|r (rank)
|The first r columns of U
|-
|nullspace or kernel
|\mathrm(A) or \mathrm (A)
|\mathbf^n
|n - r (nullity)
|The last (n - r) columns of V
|-
|row space or coimage
|\mathrm(A^\mathrm) or \mathrm (A^\mathrm)
|\mathbf^n
|r (rank)
|The first r columns of V
|-
|left nullspace or cokernel
|\mathrm(A^\mathrm) or \mathrm (A^\mathrm)
|\mathbf^m
|m - r (corank)
|The last (m - r) columns of U
|}
Secondly:
# In \mathbf^n, \mathrm(A) = (\mathrm(A^\mathrm))^\perp, that is, the nullspace is the orthogonal complement of the row space
# In \mathbf^m, \mathrm(A^\mathrm) = (\mathrm(A))^\perp, that is, the left nullspace is the orthogonal complement of the column space.
The dimensions of the subspaces are related by the rank–nullity theorem, and follow from the above theorem.
Further, all these spaces are intrinsically defined—they do not require a choice of basis—in which case one rewrites this in terms of abstract vector spaces, operators, and the dual spaces as A\colon V \to W and A^
* \colon W^
* \to V^
*: the kernel and image of A^
* are the cokernel and coimage of A.
== See also ==

* Rank–nullity theorem
* Closed range theorem

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fundamental theorem of linear algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.